Some classes of dispersible dcsl-graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

4-Prime cordiality of some classes of graphs

Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1....

متن کامل

A Characterization of k-Uniform DCSL Graphs

Let an injective function f : V (G) → 2X, where V (G) is the vertex set of a graph G and 2X is the power set of a nonempty set X, be given. Consider the induced function f ⊕ : V (G) × V (G) → {Φ} defined by f⊕ (u, v) = f(u) ⊕ f(v), where f(u) ⊕ f(v) denotes the symmetric difference of the two sets. The function f is called a k-uniform dcsl (and X a k-uniform dcsl-set) of the graph G, if there e...

متن کامل

Bicolored matchings in some classes of graphs

Given a graph G = (V,E) and a set P = {po, p1, . . . , ps} of integers 0 ≤ po < p1 < . . . < ps ≤ b|V |/2c, we want to color a subset R ⊆ E of edges of G, say in red, in such a way that for any i (0 ≤ i ≤ s) G contains a maximum matching Mi with exactly pi red edges, i.e., |Mi ∩ R| = pi. We shall in particular be interested in finding a smallest subset R for which the required maximum matchings...

متن کامل

Some minor-closed classes of signed graphs

We define four minor-closed classes of signed graphs in terms of embeddability in the annulus, projective plane, torus, and Klein bottle. We give the full list of 20 excluded minors for the smallest class and make a conjecture about the largest class.

متن کامل

Some Infinite Classes of Fullerene Graphs

A fullerene graph is a 3 regular planar simple finite graph with pentagon or hexagon faces. In these graphs the number of pentagon faces is 12. Therefore, any fullerene graph can be characterized by number of its hexagon faces. In this note, for any h > 1, we will construct a fullerene graph with h hexagon faces. Then, using the leapfrogging process we will construct stable fullerenes with 20 +...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Carpathian Mathematical Publications

سال: 2018

ISSN: 2313-0210,2075-9827

DOI: 10.15330/cmp.9.2.128-133